

Interactive Heart Simulator Your virtual patient.

The InterSim® III Touch is used to simulate the human heart. In combination with the InterSim® III Adapter Box, the electrical and electrochemical properties of the cardiac system of humans can be simulated and the interaction with implantable pacemakers and defibrillators can be learned.

HIGHLIGHTS

- Self-contained device
- Easy to use software
- Full support of IS-1, IS-4, DF-1 and DF-4
- Support for all shock vectors
- ► Classroom compatible
- Additional adapter box for safe handling of ICDs
- High voltage resistant (up to 1500 V)
- CE certification
- NRTL certification for US and Canada

APPLICATION VARIANTS

InterSim® III Adapter Box

Connection of implantable pulse generators (CRT-P, CRT-D or ICD)

Standard version

(support for IS-1; optionally DF-1 or

DF-4)

Extended version

(support for IS-1 and IS-4; optionally

DF-1 or DF-4)

InterSim® III Adapter for Temporary Pacemaker Connection of 2-channel external pacemakers

Two different connection types (2 mm banana plugs and Medtronic compatible connectors)

SYSTEM INFORMATION

Due to the self-contained system no separate computer is required.

- Based on Windows® 10 tablet
- 10.1" capacitive multi-touch display
- Simulator software pre-installed (update-capable)
- Kiosk mode operation (Customized setup with assigned access and reduced maintenance)
- Pen operation possible
- Fanless cooling
- Presentation mode via docking station
- Accessories available (e. g. docking station, stable frame)

FEATURES

Basic functionalities

Device types Two chamber Rates Atrial 2...245 bpm Biventricular AVN 2...200 bpm Quadripolar Ventricular 2...250 bpm **Rhythms** Sinus Rhythm, Sinus Brady, Sinus Arrest Intervals 50...400 ms PR Idioventricular Rhythm RP 130 600 ms Sinus Tachy, Brady-Tachy Syndrome, Block rate 20...250 bpm Paroxysmal Atrial Tachy Coupling 100...1000 ms Atrial Flutter, Atrial Fibrillation, AVNRT, Vulnerable phase 40...80 ms Combined Atrial Flutter/Fibrillation BBB QRS width 80...220 ms RV-LV 10...[BBB QRS width] ms LV Tachy (slow, medium, fast, very fast) RV Tachy (slow, medium, fast, very fast) **Thresholds** Polymorphous VT, Torsade de Pointes A, RV, LV 0.5...3.75 V Ventricular Flutter, Ventricular Fibrillation (no capture; strength-duration curve) RV coil 0...80 J (25 % variation optional) Dual tachycardia Workload 0...100 % **Blocks** 1:1 conduction AV Block I Far-field R-wave AV Block II Mobitz II (2:1, 3:1, 4:1) Status off, small, large AV Block II Mobitz I Intrinsic VA interval 0...100 ms Paced VA interval 50...200 ms AV Block III Retrograde Conduction **Amplitude T-Wave** normal, medium, large, extra-large, Accessory Pathway high angle LBBB A-pace crosstalk **RBBB** 0...50 ms Latency 5...102 ms Width **Visualization** Showing of up to 7 ECG traces (with time measurement functionality) A-Pace-P latency 1...150 ms 4 different ,sweep speeds' 3 different sizes of ECG display V-Pace-Q latency 1...150 ms Stopping and reviewing ECG (up to 8 min **Defects** back) A, RV, LV normal, fracture, leakage, scar Saving InterSim III ECG as Jpg RV coil fracture Miscellaneous Saving and reloading states of the simulator EMI for pacemaker/ICD 50/60 Hz 5 mV, 50/60 Hz 0.5 mV, including all settings artifacts, noise Developing of self-running scenarios (macros) Support of all possible sensing and pacing

Parameters

Chances (ATP)

ERAF (early recurrence of AF) ERVT (early recurrence of VT)

Post shock asystole (up to 180 ms)

vectors

vector

Support for all shock vectors

±RV coil - SVC coil)

(±RV coil - SVC coil | CAN, ±RV coil - CAN,

Measurement of shock energy, polarity and

DEVICE DATA

Size Basic device Adapter Box	270 x 180 x 65 mm 150 x 125 x 60 mm
Ambient temperature Operation Storage / transport	+5+40 °C -20+60 °C
Max. relative humidity (non- condensing)	90%

Max. altitude during operation	2000 m above sea level
Place of use	Indoor use only
Power supply	100 - 240 V AC, 50 - 60 Hz
Battery powered operation	~3 hours
Country-specific plug attachments	EU, UK, US

ELECTRICAL DATA

Surface ECG

Channels (limb lead)	LA (aVL), LL (aVF), RA (aVR), RL (connected to ground)
Surface ECG output Amplitude Frequency	-50+50 mV (±5 %) 1 kHz
Output impedance	510 Ω
latar condice 500	

Intracardiac ECG

Channels

Terminal pin IS-1	A, RV, LV (always tip/ring)
Terminal pin IS-4	LV (LV1-LV4)
HV terminal DF-4	RV (tip/ring)

Intracardiac ECG output

Amplitude	-30+30 mV (±10 %)
Frequency	1 kHz

Pulse detection

Pulse amplitude	0.4/.5 V
Pulse duration	0.120 ms
Max. measurement error	±2 % (Amplitude) /
	±1 % (Duration)

Input impedance (unipolar)

normal	170550 Ω (±5 %)
leakage / short cut	50 Ω (±5 %)
fracture / broken	> 5000 Ω

Input impedance (bipolar)

Input voltage protection	1.5 kV
fracture / broken	> 5000 Ω
leakage / short cut	100 Ω (±5 %)
normal	3001000 Ω (±5 %)

Defibrillator channels

Channels

HV terminal DF-1	RV coil, SVC coil
HV terminal DF-4	RV coil. SVC coil

Intracardiac ECG output

Amplitude	-12+12 mV (±10 %)
F.,	4 1.11-

Frequency

Defibrillator	pulse	detection
Pulso amr	ditudo	

-1.5+1.5 kV
80 J
±10 % (amplitude) /
±2.5 % (energy)

Input impedance

RV coil to CAN	79 Ω (±5 %)
RV coil to SVC coil	50 Ω (±5 %)
RV coil to SVC coil CAN	40 Ω (±5 %)
RV coil (fracture / broken)	open

Pause times between defibrillator pulses

After single pulse	≥60 s
After pulse series (max.	≥180 s
5 pulses)	

DC fibber detection (via RV coil)

Pulse amplitude	6.2 V (typ.)
Pulse duration	19s

Ingenieurbüro Lang Dipl.-Ing. Lutz Lang Hintere Dorfstraße 10 OT Seifersbach 09661 Rossau Germany

www.intersim3.com

InterSim® III is a joint venture product between Ingenieurbüro Lang and TQ-Systems GmbH. Production, sales and service for the product is carried out exclusively by TQ-Systems GmbH.

